# Copyright (C) 2024 qBraid
#
# This file is part of the qBraid-SDK
#
# The qBraid-SDK is free software released under the GNU General Public License v3
# or later. You can redistribute and/or modify it under the terms of the GPL v3.
# See the LICENSE file in the project root or <https://www.gnu.org/licenses/gpl-3.0.html>.
#
# THERE IS NO WARRANTY for the qBraid-SDK, as per Section 15 of the GPL v3.
"""
Module for generate random quantum circuits used for testing
"""
from __future__ import annotations
from typing import TYPE_CHECKING, Optional
import numpy as np
from qbraid._logging import logger
from qbraid.exceptions import QbraidError
from qbraid.programs.exceptions import PackageValueError
from qbraid.programs.registry import QPROGRAM_ALIASES
from qbraid.transpiler.converter import transpile
from qbraid.transpiler.graph import ConversionGraph
if TYPE_CHECKING:
import qbraid.programs
[docs]
def random_circuit(
package: str,
num_qubits: Optional[int] = None,
depth: Optional[int] = None,
graph: Optional[ConversionGraph] = None,
max_attempts: int = 1,
**kwargs,
) -> qbraid.programs.QPROGRAM:
"""Generate random circuit of arbitrary size and form.
Args:
package (str): qBraid supported software package
num_qubits (int, optional): Number of quantum wires.
If not provided, set randomly in range [1,4].
depth (int, optional): Layers of operations (i.e. critical path length)
If not provided, set randomly in range [1,4].
graph (ConversionGraph, optional): Conversion graph to use for transpilation
max_attempts (int, optional): Maximum number of attempts to generate a random circuit
**kwargs: Additional keyword arguments to pass to the random circuit generator
Raises:
PackageValueError: if ``package`` is not supported
ValueError: when no conversion path exists for the specified package
QbraidError: when random circuit generation fails for the specified package
Returns:
qbraid.programs.QPROGRAM: randomly generated quantum circuit/program
"""
def validate_and_assign(value: Optional[int], name: str):
if value is None:
return np.random.randint(1, 4)
if not isinstance(value, int) or value <= 0:
raise ValueError(f"Invalid random circuit option. '{name}' must be a positive integer.")
return value
if package not in QPROGRAM_ALIASES:
raise PackageValueError(f"Package '{package}' is not supported.")
generator_funcs = {
"ionq": "qbraid.interface.random.ionq_random.ionq_random",
"qasm3": "qbraid.interface.random.qasm3_random.qasm3_random",
"qiskit": "qbraid.interface.random.qiskit_random.qiskit_random",
"cirq": "qbraid.interface.random.cirq_random.cirq_random",
}
graph = graph or ConversionGraph()
valid_generators = [gen for gen in list(generator_funcs.keys()) if graph.has_path(gen, package)]
if not valid_generators:
raise ValueError(
f"No registered generator that can create a random circuit for '{package}'."
)
num_qubits = validate_and_assign(num_qubits, "num_qubits")
depth = validate_and_assign(depth, "depth")
sorted_generators = graph.get_sorted_closest_sources(package, valid_generators)
for src_pkg in sorted_generators:
func_path = generator_funcs[src_pkg]
try:
module_name, func_name = func_path.rsplit(".", 1)
module = __import__(module_name, fromlist=[func_name])
rand_circuit_func = getattr(module, func_name)
for attempt in range(max_attempts):
try:
rand_circuit = rand_circuit_func(num_qubits, depth, **kwargs)
return transpile(rand_circuit, package)
except Exception as attempt_err: # pylint: disable=broad-exception-caught
if attempt < max_attempts - 1:
logger.info("Attempt %d failed: %s. Retrying...", attempt + 1, attempt_err)
continue
raise
except Exception as err: # pylint: disable=broad-exception-caught
logger.info("Failed to generate circuit with %s: %s", src_pkg, err)
continue
raise QbraidError(f"Failed to generate random circuit for program type '{package}'.")
[docs]
def random_unitary_matrix(dim: int) -> np.ndarray:
"""Create a random (complex) unitary matrix of order `dim`
Args:
dim: integer square matrix dimension
Returns:
random unitary matrix of shape dim x dim
"""
# Create a random complex matrix of size dim x dim
matrix = np.random.randn(dim, dim) + 1j * np.random.randn(dim, dim)
# Use the QR decomposition to get a random unitary matrix
unitary, _ = np.linalg.qr(matrix)
return unitary