Source code for qbraid.runtime.result_data

# Copyright (C) 2024 qBraid
#
# This file is part of the qBraid-SDK
#
# The qBraid-SDK is free software released under the GNU General Public License v3
# or later. You can redistribute and/or modify it under the terms of the GPL v3.
# See the LICENSE file in the project root or <https://www.gnu.org/licenses/gpl-3.0.html>.
#
# THERE IS NO WARRANTY for the qBraid-SDK, as per Section 15 of the GPL v3.

"""
Module containing models for schema-conformant ResultData classes.

"""
from __future__ import annotations

from abc import ABC, abstractmethod
from dataclasses import dataclass
from typing import Any, Optional, TypeVar, Union

import numpy as np

from qbraid.programs import ExperimentType

from .postprocess import counts_to_probabilities, normalize_counts
from .schemas.experiment import AnnealingExperimentMetadata, GateModelExperimentMetadata

KeyType = TypeVar("KeyType", str, int)

MeasCount = dict[KeyType, int]

MeasProb = dict[KeyType, float]


[docs] class ResultData(ABC): """Abstract base class for runtime results linked to a specific :class:`~qbraid.programs.ExperimentType`. """ @property @abstractmethod def experiment_type(self) -> ExperimentType: """Returns the experiment type.""" @abstractmethod def to_dict(self) -> dict[str, Any]: """Converts the result data to a dictionary."""
[docs] class GateModelResultData(ResultData): """Class for storing and accessing the results of a gate model quantum job."""
[docs] def __init__( self, measurement_counts: Optional[Union[MeasCount, list[MeasCount]]] = None, measurements: Optional[Union[np.ndarray, list[np.ndarray]]] = None, **kwargs, ): """Create a new GateModelResult instance.""" self._measurement_counts = measurement_counts self._measurements = measurements self._unscoped_data = kwargs self._cache = { "bin_nz": None, "bin_wz": None, "dec_nz": None, "dec_wz": None, "prob_bin_nz": None, "prob_bin_wz": None, "prob_dec_nz": None, "prob_dec_wz": None, "to_dict": None, }
@property def experiment_type(self) -> ExperimentType: """Returns the experiment type.""" return ExperimentType.GATE_MODEL @classmethod def from_dict(cls, data: dict[str, Any]) -> GateModelResultData: """Creates a new GateModelResult instance from a dictionary.""" measurement_counts = data.pop("measurement_counts", data.pop("measurementCounts", None)) measurements = data.pop("measurements", None) if isinstance(measurements, list): measurements = np.array(measurements, dtype=object) return cls(measurement_counts=measurement_counts, measurements=measurements, **data) @classmethod def from_object(cls, model: GateModelExperimentMetadata, **kwargs) -> GateModelResultData: """Creates a new GateModelResultData instance from a GateModelExperimentMetadata object.""" return cls.from_dict(model.model_dump(**kwargs)) @property def measurements(self) -> Optional[Union[np.ndarray, list[np.ndarray]]]: """Returns the measurements data of the run.""" return self._measurements @property def measurement_counts(self) -> Optional[Union[MeasCount, list[MeasCount]]]: """Returns the histogram data of the run as passed in the constructor.""" return self._measurement_counts def get_counts( self, include_zero_values: bool = False, decimal: bool = False ) -> Union[MeasCount, list[MeasCount]]: """ Returns the histogram data of the run with optional zero values and binary/decimal keys. Args: include_zero_values (bool): Whether to include states with zero counts. decimal (bool): Whether to return counts with decimal keys (instead of binary). Returns: Union[dict[str, int], list[dict[str, int]]]: The histogram data. Raises: ValueError: If counts data is not available. """ if self._measurement_counts is None: raise ValueError("Counts data is not available.") cache_key = f"{'dec' if decimal else 'bin'}_{'wz' if include_zero_values else 'nz'}" if self._cache[cache_key] is not None: return self._cache[cache_key] counts = normalize_counts( self._measurement_counts, include_zero_values=include_zero_values, decimal=decimal ) self._cache[cache_key] = counts return counts def get_probabilities( self, include_zero_values: bool = False, decimal: bool = False ) -> Union[MeasProb, list[MeasProb]]: """ Returns the probabilities of the measurement outcomes based on counts. Args: include_zero_values (bool): Whether to include states with zero probabilities. decimal (bool): Whether to return probabilities with decimal keys (instead of binary). Returns: Union[MeasProb, list[MeasProb]: Probabilities of measurement outcomes. Raises: ValueError: If probabilities data is not available. """ cache_key = f"prob_{'dec' if decimal else 'bin'}_{'wz' if include_zero_values else 'nz'}" if self._cache[cache_key] is not None: return self._cache[cache_key] counts = self.get_counts(include_zero_values=include_zero_values, decimal=decimal) probabilities = counts_to_probabilities(counts) self._cache[cache_key] = probabilities return probabilities def to_dict(self) -> dict[str, Any]: """Converts the GateModelResulData instance to a dictionary.""" if self._cache["to_dict"] is not None: return self._cache["to_dict"] counts = self.get_counts() probabilities = self.get_probabilities() shots = sum(counts.values()) num_measured_qubits = len(next(iter(counts))) data = { "shots": shots, "num_measured_qubits": num_measured_qubits, "measurement_counts": counts, "measurement_probabilities": probabilities, "measurements": self._measurements, } self._cache["to_dict"] = data return data @staticmethod def _format_array(arr: np.ndarray) -> str: return f"array(shape={arr.shape}, dtype={arr.dtype})" def __repr__(self) -> str: if isinstance(self._measurements, np.ndarray): measurements_info = self._format_array(self._measurements) elif isinstance(self._measurements, list) and all( isinstance(arr, np.ndarray) for arr in self._measurements ): measurements_info = ( "[" + ", ".join(self._format_array(arr) for arr in self._measurements) + "]" ) else: measurements_info = self._measurements return ( f"{self.__class__.__name__}(" f"measurement_counts={self._measurement_counts}, " f"measurements={measurements_info}" f")" )
[docs] @dataclass class AhsShotResult: """Class for storing the results of a single shot in an analog Hamiltonian simulation job.""" success: bool pre_sequence: Optional[np.ndarray] = None post_sequence: Optional[np.ndarray] = None @staticmethod def _sequences_equal(seq1: Optional[np.ndarray], seq2: Optional[np.ndarray]) -> bool: """Helper function to compare two sequences, handling None values.""" return (seq1 is None and seq2 is None) or ( seq1 is not None and seq2 is not None and np.array_equal(seq1, seq2) ) def __eq__(self, other): if not isinstance(other, AhsShotResult): return False return ( self.success == other.success and self._sequences_equal(self.pre_sequence, other.pre_sequence) and self._sequences_equal(self.post_sequence, other.post_sequence) )
[docs] class AhsResultData(ResultData): """Class for storing and accessing the results of an analog Hamiltonian simulation job."""
[docs] def __init__( self, measurement_counts: Optional[dict[str, int]] = None, measurements: Optional[list[AhsShotResult]] = None, ): self._measurement_counts = measurement_counts self._measurements = measurements
@property def experiment_type(self) -> ExperimentType: """Returns the experiment type.""" return ExperimentType.AHS @property def measurements(self) -> Optional[list[AhsShotResult]]: """Returns the measurements data of the run.""" return self._measurements def get_counts(self) -> Optional[dict[str, int]]: """Returns the histogram data of the run.""" return self._measurement_counts def to_dict(self) -> dict[str, Any]: """Converts the AhsResultData instance to a dictionary.""" return { "measurement_counts": self._measurement_counts, "measurements": self._measurements, }
[docs] class AnnealingResultData(ResultData): """Class for storing and accessing the results of an annealing job."""
[docs] def __init__( self, solutions: Optional[list[dict[str, Any]]] = None, num_solutions: Optional[int] = None ): self._solutions = solutions self._num_solutions = num_solutions
@property def experiment_type(self) -> ExperimentType: """Returns the experiment type.""" return ExperimentType.ANNEALING @classmethod def from_dict(cls, data: dict[str, Any] = None) -> AnnealingResultData: """Creates a new AnnealingResultData instance from a dictionary.""" return cls( solutions=data.get("solutions"), num_solutions=data.get("num_solutions", data.get("numSolutions")), ) @classmethod def from_object(cls, model: AnnealingExperimentMetadata, **kwargs) -> AnnealingResultData: """Creates a new AnnealingResultData instance from a AnnealingExperimentMetadata object.""" return cls.from_dict(model.model_dump(**kwargs)) @property def solutions(self) -> Optional[list[dict[str, Any]]]: """Returns the solutions data of the run.""" return self._solutions @property def num_solutions(self) -> Optional[int]: """Returns the number of solutions.""" if self._num_solutions is None and self._solutions is not None: self._num_solutions = len(self._solutions) return self._num_solutions def to_dict(self) -> dict[str, Any]: """Converts the AnnealingResultData instance to a dictionary.""" return { "solutions": self.solutions, "num_solutions": self.num_solutions, }