qbraid.runtime.schemas.QuboSolveParams

class QuboSolveParams(**data)[source]

Parameters for solving a QUBO problem using NEC VA algorithm.

offset

Offset for the normalized weight information stored in the QUBO.

Type:

float

num_reads

VA sampling rate. Must be between 1 and 20. Default is 1.

Type:

Optional[int]

num_results

Number of VA annealing results. Returns only the optimal solution when 1 or None is specified. Default is 1.

Type:

Optional[int]

num_sweeps

Number of VA annealing sweeps. Must be between 1 and 100000. Default is 500.

Type:

Optional[int]

beta_range

VA beta value in (start, end, steps) format. Default is (10.0, 100.0, 200).

Type:

Optional[tuple[float, float, int]]

beta_list

Beta value array for each VA sweep.

Type:

Optional[list[float]]

dense

VA matrix mode. True for dense matrix mode, False for sparse matrix mode. Default is None.

Type:

Optional[bool]

vector_mode

Mode during VA annealing. Options are ‘speed’ for speed priority or ‘accuracy’ for accuracy priority. Default is ‘accuracy’.

Type:

Optional[str]

timeout

Job execution timeout in seconds. Standard range is between 1 and 7200. Default is 1800.

Type:

Optional[int]

ve_num

Number of VEs used in VA annealing. Must be between 1 and the number of VEs installed on each server.

Type:

Optional[int]

onehot

VA onehot constraint parameter.

Type:

Optional[list[str]]

fixed

VA fixed constraint parameter.

Type:

Optional[Union[dict[str, int], list[str]]]

andzero

VA andzero constraint parameter.

Type:

Optional[list[str]]

orone

VA orone constraint parameter.

Type:

Optional[list[str]]

supplement

VA supplement constraint parameter.

Type:

Optional[list[str]]

maxone

VA maxone constraint parameter.

Type:

Optional[list[str]]

minmaxone

VA minmaxone constraint parameter.

Type:

Optional[list[str]]

init_spin

VA init_spin parameter.

Type:

Optional[Union[dict[str, int], list[str]]]

spin_list

VA spin_list parameter.

Type:

Optional[list[str]]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__init__(**data)

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

Methods

__init__(**data)

Create a new model by parsing and validating input data from keyword arguments.

construct([_fields_set])

copy(*[, include, exclude, update, deep])

Returns a copy of the model.

dict(*[, include, exclude, by_alias, ...])

from_orm(obj)

json(*[, include, exclude, by_alias, ...])

model_construct([_fields_set])

Creates a new instance of the Model class with validated data.

model_copy(*[, update, deep])

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

model_dump(*[, mode, include, exclude, ...])

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

model_dump_json(*[, indent, include, ...])

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

model_json_schema([by_alias, ref_template, ...])

Generates a JSON schema for a model class.

model_parametrized_name(params)

Compute the class name for parametrizations of generic classes.

model_post_init(_BaseModel__context)

Override this method to perform additional initialization after __init__ and model_construct.

model_rebuild(*[, force, raise_errors, ...])

Try to rebuild the pydantic-core schema for the model.

model_validate(obj, *[, strict, ...])

Validate a pydantic model instance.

model_validate_json(json_data, *[, strict, ...])

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

model_validate_strings(obj, *[, strict, context])

Validate the given object with string data against the Pydantic model.

parse_file(path, *[, content_type, ...])

parse_obj(obj)

parse_raw(b, *[, content_type, encoding, ...])

schema([by_alias, ref_template])

schema_json(*[, by_alias, ref_template])

update_forward_refs(**localns)

validate(value)

validate_beta_list(value)

Validate the beta_list value.

validate_beta_range(value)

Validate the beta_range value.

validate_num_reads(value)

Validate the num_reads value.

validate_num_sweeps(value)

Validate the num_sweeps value.

validate_offset(value)

Validate the offset value.

validate_timeout(value)

Validate the timeout value.

validate_ve_num(value)

Validate the ve_num value.

validate_vector_mode(value)

Validate the vector_mode value.

Attributes

model_computed_fields

model_config

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

model_extra

Get extra fields set during validation.

model_fields

model_fields_set

Returns the set of fields that have been explicitly set on this model instance.

offset

num_reads

num_results

num_sweeps

beta_range

beta_list

dense

vector_mode

timeout

ve_num

onehot

fixed

andzero

orone

supplement

maxone

minmaxone

init_spin

spin_list