Source code for qbraid.programs.gate_model._model

# Copyright (C) 2024 qBraid
#
# This file is part of the qBraid-SDK
#
# The qBraid-SDK is free software released under the GNU General Public License v3
# or later. You can redistribute and/or modify it under the terms of the GPL v3.
# See the LICENSE file in the project root or <https://www.gnu.org/licenses/gpl-3.0.html>.
#
# THERE IS NO WARRANTY for the qBraid-SDK, as per Section 15 of the GPL v3.

"""
Module defining GateModelProgram Class

"""
from __future__ import annotations

from abc import ABC, abstractmethod
from typing import TYPE_CHECKING, Any, Optional

import numpy as np

from qbraid.programs.program import QuantumProgram

if TYPE_CHECKING:
    import qbraid.runtime


[docs] class GateModelProgram(QuantumProgram, ABC): """Abstract class for qbraid program wrapper objects.""" @property @abstractmethod def qubits(self) -> list[Any]: """Return the qubits acted upon by the operations in this circuit""" @property def num_qubits(self) -> int: """Return the number of qubits in the circuit.""" return len(self.qubits) @property @abstractmethod def num_clbits(self) -> Optional[int]: """Return the number of classical bits in the circuit.""" @property def depth(self) -> int: """Return the circuit depth (i.e., length of critical path).""" raise NotImplementedError def _unitary(self) -> np.ndarray: """Calculate unitary of circuit.""" raise NotImplementedError def unitary(self) -> np.ndarray: """Calculate unitary of circuit.""" if self.spec.alias in ["pyquil", "qiskit", "qasm3"]: return self.unitary_rev_qubits() return self._unitary() def unitary_rev_qubits(self) -> np.ndarray: """Peforms Kronecker (tensor) product factor permutation of given matrix. Returns a matrix equivalent to that computed from a quantum circuit if its qubit indicies were reversed. Args: matrix (np.ndarray): The input matrix, assumed to be a 2^N x 2^N square matrix where N is an integer. Returns: np.ndarray: The matrix with permuted Kronecker product factors. Raises: ValueError: If the input matrix is not square or its size is not a power of 2. """ matrix = self._unitary() if matrix.shape[0] != matrix.shape[1] or (matrix.shape[0] & (matrix.shape[0] - 1)) != 0: raise ValueError("Input matrix must be a square matrix of size 2^N for some integer N.") # Determine the number of qubits from the matrix size num_qubits = int(np.log2(matrix.shape[0])) # Create an empty matrix of the same size permuted_matrix = np.zeros((2**num_qubits, 2**num_qubits), dtype=complex) for i in range(2**num_qubits): for j in range(2**num_qubits): # pylint: disable=consider-using-generator # Convert indices to binary representations (qubit states) bits_i = [((i >> bit) & 1) for bit in range(num_qubits)] bits_j = [((j >> bit) & 1) for bit in range(num_qubits)] # Reverse the bits reversed_i = sum([bit << (num_qubits - 1 - k) for k, bit in enumerate(bits_i)]) reversed_j = sum([bit << (num_qubits - 1 - k) for k, bit in enumerate(bits_j)]) # Update the new matrix permuted_matrix[reversed_i, reversed_j] = matrix[i, j] return permuted_matrix def unitary_little_endian(self) -> np.ndarray: """Converts unitary calculated using big-endian system to its equivalent form in a little-endian system. Args: matrix: big-endian unitary Raises: ValueError: If input matrix is not unitary Returns: little-endian unitary """ matrix = self.unitary() rank = len(matrix) if not np.allclose(np.eye(rank), matrix.dot(matrix.T.conj())): raise ValueError("Input matrix must be unitary.") num_qubits = int(np.log2(rank)) tensor_be = matrix.reshape([2] * 2 * num_qubits) indicies_in = list(reversed(range(num_qubits))) indicies_out = [i + num_qubits for i in indicies_in] tensor_le = np.einsum(tensor_be, indicies_in + indicies_out) return tensor_le.reshape([rank, rank]) def remove_idle_qubits(self) -> None: """Remove empty registers of circuit.""" raise NotImplementedError def reverse_qubit_order(self) -> None: """Rerverse qubit ordering of circuit.""" raise NotImplementedError def transform(self, device: qbraid.runtime.QuantumDevice) -> None: """Transform program to according to device target profile.""" return None