Source code for qbraid.visualization.plot_counts

# Copyright (C) 2024 qBraid
#
# This file is part of the qBraid-SDK
#
# The qBraid-SDK is free software released under the GNU General Public License v3
# or later. You can redistribute and/or modify it under the terms of the GPL v3.
# See the LICENSE file in the project root or <https://www.gnu.org/licenses/gpl-3.0.html>.
#
# THERE IS NO WARRANTY for the qBraid-SDK, as per Section 15 of the GPL v3.

"""
Module for plotting historgram of measurement counts against quantum states.

"""

from typing import Callable, Optional, Union

from qbraid_core._import import LazyLoader

plt = LazyLoader("plt", globals(), "matplotlib.pyplot")
matplotlib = LazyLoader("matplotlib", globals(), "matplotlib")

# pylint: disable=too-many-arguments,unnecessary-lambda


def _counts_to_decimal(counts: dict) -> dict:
    """
    Converts a dictionary of counts to decimal form.

    Args:
        counts_dict (dict): A dictionary where keys are strings representing states and
                            values are integers representing counts.

    Returns:
        dict: A dictionary with the same keys as the input dictionary, but with values
              converted to their respective decimal proportions.

    Raises:
        ValueError: If the total count is zero.
        TypeError:  If the input dictionary contains non-integer values

    Example:
        >>> counts_to_decimal({"00": 10, "01": 15, "10": 20, "11": 5})
        {"00": 0.2, "01": 0.3, "10": 0.4, "11": 0.1}
    """

    try:
        total_count = sum(counts.values())
    except TypeError as err:
        raise TypeError("Counts values must be integers.") from err

    if total_count == 0:
        raise ValueError("Total count cannot be zero.")

    decimal_dict = {key: value / total_count for key, value in counts.items()}

    return decimal_dict


def _plot_data(
    counts: Union[list[dict], dict],
    legend: Optional[Union[list[str], str]] = None,
    colors: Optional[Union[list[str], str]] = None,
    title: Optional[str] = None,
    x_label: Optional[str] = None,
    y_label: Optional[str] = None,
    show_plot: Optional[bool] = True,
    save_path: Optional[str] = None,
    transform_fn: Optional[Callable[[dict], dict]] = None,
    label_format_fn: Optional[Callable[[float], str]] = lambda x: str(x),
):
    if not isinstance(counts, list):
        counts = [counts]
        if isinstance(colors, str):
            colors = [colors]
        if isinstance(legend, str):
            legend = [legend]

    if transform_fn:
        counts = [transform_fn(counts_dict) for counts_dict in counts]

    all_states = sorted(set(state for counts_dict in counts for state in counts_dict.keys()))

    num_dicts = len(counts)
    bar_width = 0.8 / num_dicts

    x_positions = range(len(all_states))

    if colors is None:
        cmap = matplotlib.pyplot.get_cmap("tab10")
        colors = [cmap(i / 10) for i in range(num_dicts)]

    if len(colors) != len(counts):
        raise ValueError("Number of colors must match number of datasets")

    if isinstance(legend, list) and len(legend) != len(counts):
        raise ValueError("Number of legend labels must match number of datasets")

    for i, counts_dict in enumerate(counts):
        counts_iter = [counts_dict.get(state, 0) for state in all_states]

        default_label = f"Job {i}" if num_dicts > 1 else None
        label = legend[i] if legend and i < len(legend) else default_label

        bars = plt.bar(
            [x + (i * bar_width) for x in x_positions],
            counts_iter,
            width=bar_width,
            color=colors[i % num_dicts],
            label=label,
            align="center",
        )

        y_min, y_max = plt.gca().get_ylim()
        y_range = y_max - y_min
        offset_percentage = 0.02  # Adjust this value to get the desired offset
        y_offset = y_range * offset_percentage

        for hbar, count in zip(bars, counts_iter):
            plt.text(
                hbar.get_x() + hbar.get_width() / 2,
                hbar.get_height() + +y_offset,
                label_format_fn(count),
                ha="center",
                va="bottom",
                color="black",
                fontsize=8,
            )

    plt.xticks(x_positions, all_states, rotation=45)

    y_ticks = plt.gca().get_yticks()
    plt.yticks(y_ticks)
    plt.grid(axis="y", linestyle="--", linewidth=0.7, alpha=0.7)

    if y_label:
        plt.ylabel(y_label)

    if x_label:
        plt.xlabel(x_label)

    if title:
        plt.title(title)

    if legend or num_dicts > 1:
        plt.legend()

    if save_path:
        plt.savefig(save_path)

    if show_plot:
        plt.show()


[docs] def plot_distribution( counts: Union[list[dict], dict], legend: Optional[Union[list[str], str]] = None, colors: Optional[Union[list[str], str]] = None, title: Optional[str] = None, x_label: Optional[str] = None, y_label: Optional[str] = None, show_plot: Optional[bool] = True, save_path: Optional[str] = None, ): """ Plots a histogram probability distribution of quantum states. Args: counts (Union[list[Dict], Dict]): Dictionary or a list of dictionaries containing the quantum states as keys and their respective counts as values. legend (Optional[Union[list[str], str]]): List of strings or a single string representing the labels of the datasets. Defaults to None, where it generates default labels. colors (Optional[Union[list[str], str]]): List of strings or a single string representing the colors for each dataset. Defaults to None, where it generates a color sequence. title (Optional[str]): String representing the title of the plot. Defaults to None. x_label (Optional[str]): String representing the label for the x-axis. Defaults to None. y_label (Optional[str]): String representing the label for the y-axis. Defaults to None. show_plot (Optional[bool]): Boolean representing whether to show the plot. Defaults to True. save_path (Optional[str]): String representing the path to save the plot. Defaults to None. Returns: None: This function does not return a value; it displays a plot. Raises: ValueError: Raises an error if input arguments do not match the expected types or formats. Example: .. code-block:: python counts_dict1 = {'00': 50, '01': 30, '10': 10, '11': 10} counts_dict2 = {'00': 20, '01': 40, '10': 30, '11': 10} plot_distribution( counts=[counts_dict1, counts_dict2], legend=['First Execution', 'Second Execution'], colors=['crimson', 'midnightblue'], title="Quantum State Probability Distribution", x_label="Quantum States", y_label="Probabilities" ) """ y_label = "Quasi-probabilities" if not y_label else y_label _plot_data( counts, legend, colors, title, x_label, y_label, show_plot, save_path, transform_fn=_counts_to_decimal, label_format_fn=lambda x: "{:.3f}".format(x), # pylint: disable=consider-using-f-string )
[docs] def plot_histogram( counts: Union[list[dict], dict], legend: Optional[Union[list[str], str]] = None, colors: Optional[Union[list[str], str]] = None, title: Optional[str] = None, x_label: Optional[str] = None, y_label: Optional[str] = None, show_plot: Optional[bool] = True, save_path: Optional[str] = None, ): """ Plots a histogram of measurement counts against quantum states. Args: counts (Union[list[Dict], Dict]): Dictionary or a list of dictionaries containing the quantum states as keys and their respective counts as values. legend (Optional[Union[list[str], str]]): List of strings or a single string representing the labels of the datasets. Defaults to None, where it generates default labels. colors (Optional[Union[list[str], str]]): List of strings or a single string representing the colors for each dataset. Defaults to None, where it generates a color sequence. title (Optional[str]): String representing the title of the plot. Defaults to None. x_label (Optional[str]): String representing the label for the x-axis. Defaults to None. y_label (Optional[str]): String representing the label for the y-axis. Defaults to None. show_plot (Optional[bool]): Boolean representing whether to show the plot. Defaults to True. save_path (Optional[str]): String representing the path to save the plot. Defaults to None. Returns: None: This function does not return a value; it displays a plot. Raises: ValueError: Raises an error if input arguments do not match the expected types or formats. Example: .. code-block:: python counts_dict1 = {'00': 50, '01': 30, '10': 10, '11': 10} counts_dict2 = {'00': 20, '01': 40, '10': 30, '11': 10} plot_histogram( counts=[counts_dict1, counts_dict2], legend=['First Execution', 'Second Execution'], colors=['crimson', 'midnightblue'], title="Quantum State Measurement Counts", x_label="Quantum States", y_label="Counts" ) """ y_label = "Counts" if not y_label else y_label _plot_data( counts, legend, colors, title, x_label, y_label, show_plot, save_path, label_format_fn=lambda x: str(x), )