qbraid.runtime.schemas.DeviceData

class DeviceData(**data)[source]

Represents metadata and capabilities of a quantum device.

provider

The entity that manufactures the quantum hardware or maintains the simulator software.

Type:

str

vendor

The entity that hosts or provides access to the quantum device for end users.

Type:

str

name

The name of the quantum device.

Type:

str

paradigm

The quantum computing paradigm (e.g., gate-model, AHS).

Type:

str

status

The current status of the device (e.g., ONLINE, OFFLINE).

Type:

str

is_available

Indicates whether the device is available for jobs.

Type:

bool

queue_depth

The depth of the job queue, or None if not applicable.

Type:

int, optional

device_type

The type of device (e.g., Simulator, QPU).

Type:

str

num_qubits

The number of qubits supported by the device.

Type:

int

run_package

The software package used to interact with the device (e.g. qasm2).

Type:

str

device_id

The qBraid-specific device identifier.

Type:

str

noise_models

A list of supported noise models. Defaults to None.

Type:

list[str], optional

pricing

The pricing structure for using the device, in qBraid credits.

Type:

DevicePricing

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__init__(**data)

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

Methods

__init__(**data)

Create a new model by parsing and validating input data from keyword arguments.

construct([_fields_set])

copy(*[, include, exclude, update, deep])

Returns a copy of the model.

dict(*[, include, exclude, by_alias, ...])

from_orm(obj)

json(*[, include, exclude, by_alias, ...])

model_construct([_fields_set])

Creates a new instance of the Model class with validated data.

model_copy(*[, update, deep])

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

model_dump(*[, mode, include, exclude, ...])

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

model_dump_json(*[, indent, include, ...])

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

model_json_schema([by_alias, ref_template, ...])

Generates a JSON schema for a model class.

model_parametrized_name(params)

Compute the class name for parametrizations of generic classes.

model_post_init(_BaseModel__context)

Override this method to perform additional initialization after __init__ and model_construct.

model_rebuild(*[, force, raise_errors, ...])

Try to rebuild the pydantic-core schema for the model.

model_validate(obj, *[, strict, ...])

Validate a pydantic model instance.

model_validate_json(json_data, *[, strict, ...])

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

model_validate_strings(obj, *[, strict, context])

Validate the given object with string data against the Pydantic model.

parse_file(path, *[, content_type, ...])

parse_obj(obj)

parse_raw(b, *[, content_type, encoding, ...])

schema([by_alias, ref_template])

schema_json(*[, by_alias, ref_template])

update_forward_refs(**localns)

validate(value)

Attributes

model_computed_fields

model_config

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

model_extra

Get extra fields set during validation.

model_fields

model_fields_set

Returns the set of fields that have been explicitly set on this model instance.

provider

vendor

name

paradigm

status

is_available

queue_depth

device_type

num_qubits

run_package

device_id

noise_models

pricing