qbraid.runtime.schemas.RuntimeJobModel
- class RuntimeJobModel(**data)[source]
- Represents a runtime job in the qBraid platform. - job_id
- The unique identifier for the job. - Type:
- str 
 
 - device_id
- The identifier of the quantum device used. - Type:
- str 
 
 - shots
- The number of shots for the quantum experiment. - Type:
- Optional[int] 
 
 - experiment_type
- The type of experiment conducted. - Type:
- str 
 
 - queue_position
- The position of the job in the queue. - Type:
- Optional[int] 
 
 - metadata
- Metadata associated with the experiment. - Type:
- Union[QbraidExperimentMetadata, ExperimentMetadata] 
 
 - time_stamps
- Time-related information about the job. - Type:
 
 - tags
- Custom tags associated with the job. - Type:
- dict[str, str] 
 
 - preflight
- Flag indicating if the job was run in preflight mode. - Type:
- bool 
 
 - Create a new model by parsing and validating input data from keyword arguments. - Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model. - self is explicitly positional-only to allow self as a field name. - __init__(**data)
- Create a new model by parsing and validating input data from keyword arguments. - Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model. - self is explicitly positional-only to allow self as a field name. 
 - Methods - __init__(**data)- Create a new model by parsing and validating input data from keyword arguments. - construct([_fields_set])- copy(*[, include, exclude, update, deep])- Returns a copy of the model. - dict(*[, include, exclude, by_alias, ...])- from_dict(job_data)- Creates a RuntimeJobModel instance from a dictionary of job data. - from_orm(obj)- json(*[, include, exclude, by_alias, ...])- model_construct([_fields_set])- Creates a new instance of the Model class with validated data. - model_copy(*[, update, deep])- !!! abstract "Usage Documentation" - model_dump(*[, mode, include, exclude, ...])- !!! abstract "Usage Documentation" - model_dump_json(*[, indent, include, ...])- !!! abstract "Usage Documentation" - model_json_schema([by_alias, ref_template, ...])- Generates a JSON schema for a model class. - model_parametrized_name(params)- Compute the class name for parametrizations of generic classes. - model_post_init(context, /)- Override this method to perform additional initialization after __init__ and model_construct. - model_rebuild(*[, force, raise_errors, ...])- Try to rebuild the pydantic-core schema for the model. - model_validate(obj, *[, strict, ...])- Validate a pydantic model instance. - model_validate_json(json_data, *[, strict, ...])- !!! abstract "Usage Documentation" - model_validate_strings(obj, *[, strict, ...])- Validate the given object with string data against the Pydantic model. - parse_file(path, *[, content_type, ...])- parse_obj(obj)- parse_raw(b, *[, content_type, encoding, ...])- schema([by_alias, ref_template])- schema_json(*[, by_alias, ref_template])- update_forward_refs(**localns)- validate(value)- validate_experiment_type(value)- Ensure the experiment_type is a valid ExperimentType enum value. - validate_header()- Validates that the header is correctly set up during instantiation. - validate_status(value)- Ensure the status is a valid JobStatus enum value. - Attributes - VERSION- header- Computes the schema header based on the module name and class version. - model_computed_fields- model_config- Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict]. - model_extra- Get extra fields set during validation. - model_fields- model_fields_set- Returns the set of fields that have been explicitly set on this model instance. - status_text